Distance connectivity in graphs and digraphs
نویسندگان
چکیده
Let G = (V, A) be a digraph with diameter D 6= 1. For a given integer 2 ≤ t ≤ D, the t-distance connectivity κ(t) of G is the minimum cardinality of an x → y separating set over all the pairs of vertices x, y which are at distance d(x, y) ≥ t. The t-distance edge connectivity λ(t) of G is defined similarly. The t-degree of G, δ(t), is the minimum among the out-degrees and in-degrees of all vertices with (outor in-)eccentricity at least t. A digraph is said to be maximally distance connected if κ(t) = δ(t) for all values of t. In this paper we give a construction of a digraph having D − 1 positive arbitrary integers c2 ≤ . . . ≤ cD, D > 3, as the values of its t-distance connectivities κ(2) = c2, . . . , κ(D) = cD. Besides, a digraph that shows the independence of the parameters κ(t), λ(t), and δ(t) is constructed. Also we derive some results on the distance connectivities of digraphs, as well as sufficient conditions for a digraph to be maximally distance connected. Similar results for (undirected) graphs are presented.
منابع مشابه
Sufficient conditions on the zeroth-order general Randic index for maximally edge-connected digraphs
Let D be a digraph with vertex set V(D) .For vertex v V(D), the degree of v, denoted by d(v), is defined as the minimum value if its out-degree and its in-degree . Now let D be a digraph with minimum degree and edge-connectivity If is real number, then the zeroth-order general Randic index is defined by . A digraph is maximally edge-connected if . In this paper we present sufficient condi...
متن کاملOn the distance signless Laplacian spectral radius of graphs and digraphs
Let η(G) denote the distance signless Laplacian spectral radius of a connected graph G. In this paper, bounds for the distance signless Laplacian spectral radius of connected graphs are given, and the extremal graph with the minimal distance signless Laplacian spectral radius among the graphs with given vertex connectivity and minimum degree is determined. Furthermore, the digraph that minimize...
متن کاملCommon fixed points for a pair of mappings in $b$-Metric spaces via digraphs and altering distance functions
In this paper, we discuss the existence and uniqueness of points of coincidence and common fixed points for a pair of self-mappings satisfying some generalized contractive type conditions in $b$-metric spaces endowed with graphs and altering distance functions. Finally, some examples are provided to justify the validity of our results.
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملCentric connectivity index by shell matrices
Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...
متن کاملOn the distance connectivity of graphs and digraphs
Let G=( V, E) be a digraph with diameter D # 1. For a given integer 1 t. The t-distance edge-connectivity of G is defined analogously. This paper studies some results on the distance connectivities of digraphs and bipartite digraphs. These ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 22 شماره
صفحات -
تاریخ انتشار 1996